Vivinex™

Products may not be available in every market.

 
js_function_caller_helper
HOYA Vivinex™ Toric multiSert™ (XY1A-SP)
 

The glistening-free hydrophobic Vivinex™ Toric multiSert™ IOL preloaded in the new 4-in-1 multiSert™ injector combines unprecedented clarity of vision and outstanding rotational stability at your finger tips.

HOYA Vivinex™ Toric multisert™

Vivinex™ Toric multiSert™
UNPRECEDENTED CLARITY OF VISION AND OUTSTANDING ROTATIONAL STABILITY

Vivinex™ IOL and the new 4-in-1 multiSert™ preloaded injector system –
A game changer in the delivery of high quality hydrophobic IOLs.

 

Designed to provide outstanding optical quality, Vivinex™ Toric multiSert™ offers unprecedented clarity of vision for patients suffering from cataract. Product quality, dedication and attention to detail are deeply rooted in our Japanese heritage...

UNPRECEDENTED CLARITY OF VISION AND OUTSTANDING ROTATIONAL STABILITY

  • Glistening-free hydrophobic acrylic IOL material 1,2
  • Proprietary aspheric optic design for improved image quality 3
  • Active oxygen processing treatment, a smooth surface and square optic edge to reduce PCO 2,4,5,6,7,8,9,10

UNMATCHED CONTROL AT YOUR FINGER TIPS

  • Single-handed push and two-handed screw injection within one device
  • Uniquely designed adjustable insert shield for precise injector tip insertion depth management
  • multiSert™ provides outstandingly consistent and predictable IOL delivery112
  • 1 Glistening-free  per  Miyata  scale;  study  result  of  the  David  J  Apple  International  Laboratory  for  Ocular  Pathology,  University  Hospital  Heidelberg.  Report  on  file.
  • 2 HOYA  data  on  file.  DoF-CTM-21-002,  HOYA  Medical Singapore Pte. Ltd, 2021.
  • 3 Pérez-Merino, P.; Marcos, S. (2018): Effect of intraocular lens decentration on image quality tested in a custom model eye. In: Journal of cataract and refractive surgery 44 (7), p. 889–896.
  • 4 Leydolt, C. et al. (2020): Posterior capsule opacification with two hydrophobic acrylic intraocular lenses: 3-year results of a randomized trial. In: American journal of ophthalmology 217 (9), p. 224-231.
  • 5 Giacinto, C. et al. (2019): Surface properties of commercially available hydrophobic acrylic intraocular lenses: Comparative study. In: Journal of cataract and refractive surgery 45 (9), p. 1330–1334.
  • 6 Werner, L. et al. (2019): Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in comparison to commercially available IOLs. In: Journal of cataract and refractive surgery 45 (10), p. 1490–1497.
  • 7 Nanavaty, M. et al. (2019): Edge profile of commercially available square-edged intraocular lenses: Part 2. In: Journal of cataract and refractive surgery 45 (6), p. 847–853.
  • 8 Matsushima, H. et al. (2006): Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification. In: Journal of cataract and refractive surgery 32 (6), p. 1035–1040.
  • 9 Farukhi, A. et al. (2015): Evaluation of uveal and capsule biocompatibility of a single-piece hydrophobic acrylic intraocular lens with ultraviolet-ozone treatment on the posterior surface. In: Journal of cataract and refractive surgery 41 (5), p. 1081–1087.
  • 10 Eldred, J. et al. (2019): An In Vitro Human Lens Capsular Bag Model Adopting a Graded Culture Regime to Assess Putative Impact of IOLs on PCO Formation. In: Investigative ophthalmology & visual science 60 (1), p. 113–122.
  • 11 Schartmüller, D. et al. (2019): True rotational stability of a single-piece hydrophobic intraocular lens. In: The British journal of ophthalmology 103 (2), p. 186–190.
  • 12 HOYA data on file. DoF-SERT-102-MULT-03052018, HOYA Medical Singapore Pte. Ltd, 2018 13 At IOL plane. 14 Based on an average pseudophakic human eye.
 
js_function_caller_helper